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Dispersion properties of Trivelpiece-Gould waves in periodic plasma waveguides
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Spectral properties of plasma waves in periodic plasma-filled waveguides are analyzed. Unusual features in
the spectral behavior and field distribution of natural plasma modes are predicted. In particular, it is shown that
the plasma wave spectrum has a zonal character with allowed and forbidden bands. The periodicity strongly
distorts the field distribution of plasma waves at frequencies near forbidden bands. Due to the significant
contribution of higher spatial harmonics, the field of the plasma wave concentrates in small regions and
achieves rather large local values. However, at frequencies far from forbidden bands the influence of the
periodicity on dispersion properties and field distribution of plasma waves is negligible. Possible consequences
of these effects for the beam-plasma instability in periodic plasma-filled waveguides are discussed.
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I. INTRODUCTION [7,14,15. Two main features inherent to EM modes in
vacuum periodic waveguides, the appearance of stop bands
Periodic waveguides have numerous applications in modand slow waves, are shown to remain qualitatively the same
ern microwave technology, mainly due to their two funda-for EM modes in plasma-filled periodic waveguides also.
mental properties(i) support of slow waves ani) exis- The other family is the purely plasma modes, which are
tence of stop bands. These properties are common for a largeunterparts of the well-known Trivelpiece-Gould@G)
number of waves in periodic media regardless of their naturemodes in smooth plasma waveguidé$]. They have been

However, the existence of stop bands for the plasma wavesbserved in experimen{¥,17; however, in-depth analysis

in periodic plasma-filled waveguides is proved here in a rig-of their spectral properties is extremely difficult in both

orous manner. theory and experiment. Earlier theoretical considerations of

Recently, periodic waveguide structures loaded with ahe TG modes in periodic waveguides were also based on the
magnetized plasma have become a subject of intense expecienventional approach¢s2,18, like expanding the fields in
mental and theoretical investigati¢ti—4]. Since they pro- spatial harmonic series and then applying boundary condi-
vide extremely favorable conditions for beam-wave instabil-tions on periodic walls. The dispersion relation obtained in
ity development, they can be useful for enhancement ofhe form of an infinite determinantal equation was calculated
power-handling capability, increase of tunability, and im-by truncating it to finite size. It has been shown by many
provement of some other characteristics of high power miworkers[12,13,18,19that periodicity acts on the dispersion
crowave(HPM) electron devices. properties of TG modes approximately in the same manner

At present, there are several types of comparatively wellas on those of EM modes, namely, the dispersion diagram
developed plasma HPM sourcis-7] which are capable of for the periodic waveguide TG modes consists of a set of

outperforming their vacuum counterparts in many technicakhifted (in periodicity) dispersion curves for TG modes in a

aspects. The influence of plasma on the operation of somsmooth waveguide. They undergo splitting at the points of

other HPM sources has been studed als§8inll]. How-  mutual crossing. Near these points stop bands are formed if
ever, the area is open for in-depth research to understand tiige group velocities of the modes corresponding to the cross-
physics of the plasma influence. Despite numerous expering curves have opposite signs. However, later, more de-
mental observations of plasma-induced improvement ofailed investigations showed that the dispersion diagrams cal-

HPM sources, the mechanism of the plasma effect on theiculated in such a manner, if a large number of spatial

operation still remains unclear. To a great extent this can blharmonics were taken into account, lost the periodicity with

explained by lack of understanding of the spectral propertiesespect to the wave number required by the Floquet theorem
of plasma-filled periodic structures at low frequencies ( [20]. New passbands and forbidden bands appear and disap-
<w,, Wherew, is the plasma frequency andlis the wave pear when every subsequent spatial harmonic is taken into
frequency. account. It seems that it is impossible to obtain correct re-

As known, plasma-filled periodic waveguides support twosults regardless of the number of spatial harmonics. Mean-
families of mode$12,13. One of them is the high-frequency while, the density of dispersion curves increases infinitely in
electromagnetidEM) mode. Dispersion properties of EM the finite range of frequency<Ow<w, producing a funda-
modes in plasma-filled periodic waveguides are very similamentally different type of spectral behavior, the so-called
to those in vacuum periodic waveguides. They have beedense spectrufi2l]. The properties of the latter have not
successfully analyzed by using conventional approachelseen studied yet even qualitatively.

[12,13 and the results confirmed by experimental data Recently, a more suitable approach for the treatment of
the “dense” spectrum was suggestg2P]. It can take into
account all spatial harmonics and the corresponding

*Email address: zaginaylov@postmaster.co.uk eigenvalue/eigenfunction problem can be reformulated in
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H, 1 0H,
é,—xz—lks(w)EZ, EXZ.——. (2)

Equation(1) is correct in a rigorous mathematical sense pro-
vided thate’(z)<1 and valid in a qualitative sense if this
condition is slightly brokern23].

A direct numerical analysis of Eql) is hardly possible,
since it describes the dense spectrum, i.e., each point in the

i

};erfect conduct;r;%fﬁ” w-k, plane inside the frequency range@ <, is a solu-
tion of EqQ. (1) or is infinitely close to it. Indeed, lek, ()
FIG. 1. Geometry of the problem. be the eigenvalue of Eql) with the eigenfunctionV (z),

wherem is the transverse index. It is not difficult to see that

terms of an integral equation for the total field, avoiding theKzmr @) =Kzm(@) + nko, Whereko=277/_d, are als_,o eigenval-

infinite determinantal dispersion equation. The integral equaeS Of Eq;(_li. But they have other eigenfunction®.,(z)

tion obtained was solved analytically in the casdeffw)] = Ym(2)€ ™% The set of curvek,m{ @) =k;n{w) +nko,

<1, wheres () =1— w}/w? is the dielectric permittivity of wherem=1,...» andn=0,21,%2,... =, entirely fill

the cold plasma. The dispersion curves obtained in the fird{'€ range 2w <w in the w-k, plane[21]. However, it can

approximation had no stop bands, but it was unclear whethd?® €asily established that eigenvalueg,{») and eigen-

this was the consequence of the idealization or if such &Unctions ¥my(z) with fixed m and differentn define the

feature is really inherent in the TG modes in periodic S@me fuII fieldE,,(0,z), which is characterized by the trans-

waveguides. verse |nde>m. Therefore, one can use any of them to calcu-
The aim of this work is to develop a more accurate andate the full field(the others are spurious

detailed analysis of the dispersion properties of the TG Atafixednthe eigenvalues of El), kn(w), correspond

modes in a periodic plasma-filled waveguide based on th& & Set of transverse modes and consequently generate the

approach proposed if22]. The remainder of the article is ordmary spectrum as in the case of a smopth p_Iasma-flIIed

organized as follows. Section Il deals with the formulation ofWaveguide. Thus, before numerical calculations it would be

the problem and the derivation of a basic functional equatiof€asonable to transform E€) in such a way that one can

suitable for numerical analysis. Section Il presents severd€t rid of spurious solutions. _

numerical schemes to solve the obtained functional equation. FOr this purpose, we introduce a function

Section IV contains the computed results. Section V summa- ,

rizes the findings of this work. F(z):f E,(02')dZ.

Il. FORMULATION OF THE PROBLEM AND For F(z) we have the following problem:
DESCRIPTION OF THE MATHEMATICAL MODEL
N : : F(z+¢(2))+F(z—-¢(2))=0,

For the sake of simplicity consider, followiri@2], a pla- ®)
nar waveguide of periodically varying thickness loaded with F(z+d)=e*IF(z2).
a uniform, cold, collisionless plasma embedded in a strong
axial static magnetic fieldsee Fig. 1L All wave perturba-
tions are assumed to be of the TM polarization
(Ex,Hy,EZ)~e*""‘(w< wp), electrostatic, and symmetric
with respect to the axis[E,(x,z) =E,(—X,z)]. Dispersion
properties of the TG modes in such a structure are character-
ized by the functional equatigr22]

Now presentF(z) in the form F(z)=p(z)e*#"'?®, and
decouple Eq(3) into the folowing two problems for two new
unknown real functiong(z) and 6(z):

p(z+ ¢(2))=p(z— ¢(2)),

(4)
| | p(z+d)=p(2),
ekt (z+ o(2))[1+ ¢’ (2)]+ e 2DV (z— ¢(2))
1
X[1-¢'(2)]=0, D) 510+ ¢(2)= 0z ¢(2))]=(Mm+ 12 7= kz0(2),
| )
where W(2)=e "E,(02), @(2)=|e(0)|"Xo(2), x 0(z+d)=2mn+6(2).

=Xq(2) is the equation of the periodic waveguide boundary,

Xo(z+d)=Xq(2), d is the period of the structuré, is the It can be shown that the spectral properties of our structure
wave number of the perturbations, and,(0,2) are determined by the problef®), while the problem(4) has
=E,(X,2)|x=0 is the axial electric field on the waveguide a simple and evident solutign(z) = const.

axis, which is assumed to be quasiperiodit,(0,z+d) Now, assum@& =0 in Eq.(5); this enables us to get rid of
=e'*2E,(0,z). The prime denotes differentiation. Other spurious solutions. The resulting problem characterizes the
components of the field can be expressed thrdugx,z) as  ordinary spectrum of transverse modes:
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(m+1/2) 7

1
5[0+ ¢(2)= 02— ¢(2)]= (M+ 12) 7= k0(2), Fro(2)=exfik;m(@)Z],  Kyn(w)=——p—.
e(w)] 2Xo

(6)
0(z+d)=0(2). More accurate solutions of E@5) can be found using

Therefore it is possible to analyze E@) numerically. Qerturbation theory. Rewrite Ed5) in the operator form
Lo(z)=f(z), where

Ill. METHODS OF SOLUTION OF BASIC EQUATION

N 1

LO(2)==[0(z+ ¢(2))— 0(z— ¢(z
The simplest numerical solution of E¢) is based on (2) 2[ (2t ¢(2))~ 0z ¢(2))]
perturbation theory. The zero approximation can be found by

expandingd(z+ ¢(z)) into the Taylor series nea and

! f(z)= 1/2)m—k, .
510+ ¢(2))= 0z ¢(2))] (2)=(m+1/2) ®(2)

Presentingl in the form L=Ly+L,; and 6(z) as 6(z)

1 " o~ ~ ~
=0'(De(2)+ 50 (2)e3%(2)+---. (1) =0o(2)+0:(2)+- -, whereLo=¢(2)(d/d2)[-- -], Li=L
—Lg, we have
Taking in to account only the first term of the Taylor series .
in Eq. (7) and then substituting Eq7) in Eq. (6), one can (Lo+L)[6p(2)+ 0:(2) +- - - ]=1(2). (12
obtain a first-order differential equation fé(z) that can be A .
solved analytically: Assuming thal y and 6y(z) are the zero-order valuels;
and 6,(z) are the first-order values, and so on, we obtain the
0(2) = —kzz+(m+1/2)7rfz dz _ (g following recurrence chain:Lofo(2)=1(2), Lota(2)=
®(z") —L160(2), ..., LoOn(2)=—L16,_1(2). This is a chain of

) o . . ) first-order ordinary inhomogeneous differential equations.
Using the periodicity off(2), it is not difficult to find ex-  Each of them has an analytical solution. Every successive
pressions for the spectral curvéis., eigenvalues as func- term of the chain can be expressed through the preceding one

tions of ): in a simple analytical way. Omitting algebraic details, we
, represent the expressions for eigenvalues and eigenfunctions
_ (m+1/2)m (d dz obtained afteiN iterations as
Ky @) = g — C)
0¢(Z') \
N (m+1/2)7 (d dZ’ )
For the eigenfunctions we hayassuminge(z)=1] K@) = d fo 3 1+ 21 Si(z') |, (13
¢ n=
, z dZ'
Fm(z)zexp(|(m+1/2)7rf —,) (20 2 dz' N
e(z") FN(z)=exg i(m+ 1/2)7Tf — 1 1+> s(2)] |,
@(z") n=1

Expressions(9) and (10) have clear physical meaning. (14)
Recall thalk'zm(z) =(m+ 1/2)w/ ¢(2) is the local wave num-
ber of a smooth plasma waveguide with local thicknesswvhereS,(z) are defined by the following recurrence rule:
Xo(2). Then it can be concluded that the eigenfunctions have
the form of wave packetb (z) = exi %, (z')dZ ], which

z+ ¢(zZ

)
dz'/e(z'),

—q1_1
are typical for slightly nonuniform plasma configurations Si(z)=1 ZJZ(p(Z)
[24] and widely accepted for description of slightly nonuni-
form waveguide$25]. Thus, expressio(®) is the local wave 2+ o(

2)
number of the smooth waveguide averaged over the period. S,(2)=S5,(z)— %J dz's,(z2")e(2'), ...,
In the case of sinusoidal rippleXy(z)=Xq(1+ a coskg), z=¢(2)
whereX, is the mean thickness of the waveguide, the inte-

gration in Eq.(9) can be carried out analytically, yielding z*

®(2)
Sn(2)=Sh-1(2)— %f ) dz'S, (") e(2').

z—¢(

(m+1/2) =
1D As follows from Eg.(7), convergence of solution&l3)

Kand ) le(w)|¥qV1—a?
and (14) should be expected whep(z) < (/6/27)d, which
In the limit of «—0 expressiong10) and (11) tend to is confirmed by computations. If this inequality is broken,
eigenfunctions and eigenvalues corresponding to the ordihe series in Eq(13) and (14) have a poor convergence or
nary Trivelpiece-Gould waves in a smooth waveguide: divergence. Moreover, no periodic solutions exist for the fre
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FIG. 3. Phase shift of the field(z) caused by the periodicity
taken at different frequencies within the first passband,<w
<wy.

p

FIG. 2. Dispersion curves for the first three plasma modes.

guencies providinge(z)=1d/2 at somez=z, where |

=1,2,... . This point is a singular one for the operatar IV. ANALYSIS OF NUMERICAL RESULTS
L6(z)|,-, =0. Inside the frequency bands where it is valid, ) ) ) _

o Figure 2 shows the dispersion curves of the three first
no propagating modes can occur. So the former can be

treated as stop bands. It is possible to obtain analytical eﬁlasma mode;r(lzq,l,Z) for a'smusmda_lly nppleq wave-
: ) _ guide. The dispersion properties and field distribution of
pressions for them:w_<w<w,;, where w. =wp{l

Ll Ixgko(1 @) 24 2 plasma waves are modified slightly by the_ periodicity com-
Nearostoo bands it is reasonable to solve @iby direct pared to those of the smooth waveguide if the frequency is
numerical rr?ethods Two of them have been devi/alo ed Thfar from a stop band, but they change significantly when
I ) . : ped. gpproaching the stop bands. Group velocities of plasma
first is based on the expansion &fz) in terms of a Fourier waves at the boundaries of the stop bands tend to
series:0(z) =35__ . C.e092 The resulting infinite system : b ©=))
of Iinéar alget;lrzafcx e?quatio.ns was solved after truncationzero' It should be specially noted that the wave number of
. . the fundamental plasma mode tendkg?l if the frequenc
Usually, about 50 Fourier harmonicgy(<50) were found P $ d y

ht hi . ithin 10 for th lculati approaches théth stop band. No stop bands occur at
enough to achieve precision within or the caiculation >w, .. Therefore, the results of the approximate analysis
of dispersion curves including regions near stop bands.

A eveloped if22] are valid only in this region. In the region
Another_approac_h was based on the approximation o f low frequencies the stop bands start overlaping. For ex-
0(z) by spline functions:

ample, for the parameters considered, >w_5, SO Nno
n-1 propagating waves occur below, 5=0.33%,. However,

- Rk the rigorous mathematical validity of our initial equati)
()= izzo 08i(2), (15) [ aXoko|e(w)|¥?<1] [23] is restricted to the rangew
=0.457w,, for the case in hand. Thus, in this region the
where condition of validity of our consideration is slightly violated
0 1 if z=sz<z,, A(2)
Bi= , 15
0 otherwise,
10
—Z _ Ziyk+1— 2 _
Bi(z =(—'>B!‘ Y2)+ '—)B!‘ 1(2),
i(2) Zi—z) ! 2 Zitk+1— Zi+1 +1(2) 5
k=1, 0
i ) 5
z=-d, 1=01,...n—-1.
n | — @/0p=109
-10 - (o/(op= 088 |
. e . . . --- o/mp=0.875
To achieve accuracy within 10 in the calculations of dis- ) — 0/op=0.874
persion curves, one needs to take 100 for the first-order -15 ' ' L1z

: : . . . X 4 0. 08 10 12 14 16
spline functions. By increasing the number of Fourier har- 0z 0 06

monics or the number of spline functions, it is possible to  FIG. 4. Variation of the field amplitudé\(z) caused by the
calculate the dispersion curves and field distribution with anyperiodicity taken at different frequencies within the first passband
desired accuracy. w1 <0<,

016406-4



DISPERSION PROPERTIES OF TRIVELPIECE-GOULD. .. PHYSICAL REVIEWGE 016406

and the results should be considered as qualitative. for slightly inhomogeneous waveguidgzs].

To evaluate the influence of the periodicity on the field Second, there are the frequency bands where the period-
distribution, we represent the field in the fori,(0,2) icity leads to significant modifications as compared to the
=A(2)e*Z %2 For a smooth waveguide one can putSmooth plasma-filled waveguides both in dispersion proper-
A(z)=1 and#(z)=0. Figures 3 and 4 show the phase shiftties of the plasma waves and in the field distributions. As in
6(z) and variable amplitudeA(z) of the electric field the case of the EM modes, the formation of stop bands is
E,(02) at different frequencies inside the first passbhandpossible. These effects can hardly be described by perturba-
w1 <w<w,. The behavior o(z) is close to sinusoidal if tion theory[see representatiori$3) and(14)]. Two schemes
the frequency is far fronw_ ;. However, it changes sharply ©f direct numerical analysis have been developed to solve the
if the frequency approaches.;=0.8740,. Near o, basic functional equatiof6). They are based on the Fourier
6(z) has a profile close to a serrated one whilg) has very ~ €xpansion and spline function approximation, respectively.
sharp maxima. Such significant modifications are caused byhey show that the quantity and widths of stop bands depend
the contributions of a large number of higher spatial harmonon the parameters of the periodic plasma waveguide. The
ics whose amplitudes drop very slowly with increasing num-Widths of stop bands are proportional to the plasma fre-
ber if the frequency is near a stop band. This leads to th@uency and increase with increase in the height of ripples at
Concentration Of the f|e|d in Sma” regions Where |t Cana fixed period. They also increase with decrease of the struc-
achieve a large magnitude. Such behavior is also observdlre period at a fixed height of ripples. When the frequency
when the frequency approaches any boundary of a stop baf some plasma mode approaches the stop band, the field
w=w.,. Note that this is hardly possible in vacuum peri- concentrates in small regioriewich smaller than the struc-
odic waveguides where stop bands are formed by interactioi'® period, where it can achieve a value exceeding its av-
of two or very rarely more spatial harmonics. eraged value by a factor 10. Meanwhile, the group velocities
of plasma modes tend to zero. Such effects can be explained
by the significant influence of higher spatial harmonics.

The revealed features of the TG modes in periodic plasma

Thus, the results obtained on the basis of the accuratwaveguides are essential for the treatment of the beam-
analysis show that the TG waves in periodic plasmaplasma instability in periodic plasma-filled waveguides, as
waveguides have certain specific features as compared to thiee local field distribution of plasma waves can strongly
EM waves in periodic waveguides. First, there are the freimodify the equilibrium plasma density and the beam bunch-
guency bands where the periodicity slightly modifies the dising process responsible for the appearance of coherent radia-
persion properties of the plasma waves. They propagate thetien. Also, the stop bands for plasma waves have been pre-
in the form of wave packet€l4) close to those usually ap- dicted and can be observed experimentally to confirm the
pearing in a slightly inhomogeneous plasf4] and typical  validity of the analysis presented here.

V. CONCLUSION
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