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Dispersion properties of Trivelpiece-Gould waves in periodic plasma waveguides
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Spectral properties of plasma waves in periodic plasma-filled waveguides are analyzed. Unusual features in
the spectral behavior and field distribution of natural plasma modes are predicted. In particular, it is shown that
the plasma wave spectrum has a zonal character with allowed and forbidden bands. The periodicity strongly
distorts the field distribution of plasma waves at frequencies near forbidden bands. Due to the significant
contribution of higher spatial harmonics, the field of the plasma wave concentrates in small regions and
achieves rather large local values. However, at frequencies far from forbidden bands the influence of the
periodicity on dispersion properties and field distribution of plasma waves is negligible. Possible consequences
of these effects for the beam-plasma instability in periodic plasma-filled waveguides are discussed.
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I. INTRODUCTION

Periodic waveguides have numerous applications in m
ern microwave technology, mainly due to their two fund
mental properties:~i! support of slow waves and~ii ! exis-
tence of stop bands. These properties are common for a l
number of waves in periodic media regardless of their nat
However, the existence of stop bands for the plasma wa
in periodic plasma-filled waveguides is proved here in a r
orous manner.

Recently, periodic waveguide structures loaded with
magnetized plasma have become a subject of intense ex
mental and theoretical investigation@1–4#. Since they pro-
vide extremely favorable conditions for beam-wave insta
ity development, they can be useful for enhancement
power-handling capability, increase of tunability, and im
provement of some other characteristics of high power
crowave~HPM! electron devices.

At present, there are several types of comparatively w
developed plasma HPM sources@5–7# which are capable o
outperforming their vacuum counterparts in many techn
aspects. The influence of plasma on the operation of s
other HPM sources has been studed also in@8–11#. How-
ever, the area is open for in-depth research to understan
physics of the plasma influence. Despite numerous exp
mental observations of plasma-induced improvement
HPM sources, the mechanism of the plasma effect on t
operation still remains unclear. To a great extent this can
explained by lack of understanding of the spectral proper
of plasma-filled periodic structures at low frequenciesv
,vp , wherevp is the plasma frequency andv is the wave
frequency!.

As known, plasma-filled periodic waveguides support t
families of modes@12,13#. One of them is the high-frequenc
electromagnetic~EM! mode. Dispersion properties of EM
modes in plasma-filled periodic waveguides are very sim
to those in vacuum periodic waveguides. They have b
successfully analyzed by using conventional approac
@12,13# and the results confirmed by experimental d
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@7,14,15#. Two main features inherent to EM modes
vacuum periodic waveguides, the appearance of stop ba
and slow waves, are shown to remain qualitatively the sa
for EM modes in plasma-filled periodic waveguides also.

The other family is the purely plasma modes, which a
counterparts of the well-known Trivelpiece-Gould~TG!
modes in smooth plasma waveguides@16#. They have been
observed in experiments@7,17#; however, in-depth analysis
of their spectral properties is extremely difficult in bo
theory and experiment. Earlier theoretical considerations
the TG modes in periodic waveguides were also based on
conventional approaches@12,18#, like expanding the fields in
spatial harmonic series and then applying boundary co
tions on periodic walls. The dispersion relation obtained
the form of an infinite determinantal equation was calcula
by truncating it to finite size. It has been shown by ma
workers@12,13,18,19# that periodicity acts on the dispersio
properties of TG modes approximately in the same man
as on those of EM modes, namely, the dispersion diag
for the periodic waveguide TG modes consists of a set
shifted ~in periodicity! dispersion curves for TG modes in
smooth waveguide. They undergo splitting at the points
mutual crossing. Near these points stop bands are forme
the group velocities of the modes corresponding to the cro
ing curves have opposite signs. However, later, more
tailed investigations showed that the dispersion diagrams
culated in such a manner, if a large number of spa
harmonics were taken into account, lost the periodicity w
respect to the wave number required by the Floquet theo
@20#. New passbands and forbidden bands appear and d
pear when every subsequent spatial harmonic is taken
account. It seems that it is impossible to obtain correct
sults regardless of the number of spatial harmonics. Me
while, the density of dispersion curves increases infinitely
the finite range of frequency 0,v,vp producing a funda-
mentally different type of spectral behavior, the so-call
dense spectrum@21#. The properties of the latter have no
been studied yet even qualitatively.

Recently, a more suitable approach for the treatmen
the ‘‘dense’’ spectrum was suggested@22#. It can take into
account all spatial harmonics and the correspond
eigenvalue/eigenfunction problem can be reformulated
©2001 The American Physical Society06-1
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terms of an integral equation for the total field, avoiding t
infinite determinantal dispersion equation. The integral eq
tion obtained was solved analytically in the case ofu«(v)u
!1, where«(v)512vp

2/v2 is the dielectric permittivity of
the cold plasma. The dispersion curves obtained in the
approximation had no stop bands, but it was unclear whe
this was the consequence of the idealization or if suc
feature is really inherent in the TG modes in period
waveguides.

The aim of this work is to develop a more accurate a
detailed analysis of the dispersion properties of the
modes in a periodic plasma-filled waveguide based on
approach proposed in@22#. The remainder of the article i
organized as follows. Section II deals with the formulation
the problem and the derivation of a basic functional equa
suitable for numerical analysis. Section III presents sev
numerical schemes to solve the obtained functional equa
Section IV contains the computed results. Section V sum
rizes the findings of this work.

II. FORMULATION OF THE PROBLEM AND
DESCRIPTION OF THE MATHEMATICAL MODEL

For the sake of simplicity consider, following@22#, a pla-
nar waveguide of periodically varying thickness loaded w
a uniform, cold, collisionless plasma embedded in a str
axial static magnetic field~see Fig. 1!. All wave perturba-
tions are assumed to be of the TM polarizati
(Ex ,Hy ,Ez);e2 ivt(v,vp), electrostatic, and symmetri
with respect to thez axis @Ez(x,z)5Ez(2x,z)#. Dispersion
properties of the TG modes in such a structure are chara
ized by the functional equation@22#

eikzw(z)C„z1w~z!…@11w8~z!#1e2 ikzw(z)C„z2w~z!)

3@12w8~z!#50, ~1!

where C(z)5e2 ikzzEz(0,z), w(z)5u«(v)u1/2X0(z), x
5X0(z) is the equation of the periodic waveguide bounda
X0(z1d)5X0(z), d is the period of the structure,kz is the
wave number of the perturbations, andEz(0,z)
5Ez(x,z)ux50 is the axial electric field on the waveguid
axis, which is assumed to be quasiperiodic,Ez(0,z1d)
5eikzdEz(0,z). The prime denotes differentiation. Oth
components of the field can be expressed throughEz(x,z) as

FIG. 1. Geometry of the problem.
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. ~2!

Equation~1! is correct in a rigorous mathematical sense p
vided thatw8(z)<1 and valid in a qualitative sense if thi
condition is slightly broken@23#.

A direct numerical analysis of Eq.~1! is hardly possible,
since it describes the dense spectrum, i.e., each point in
v-kz plane inside the frequency range 0,v,vp is a solu-
tion of Eq. ~1! or is infinitely close to it. Indeed, letkzm(v)
be the eigenvalue of Eq.~1! with the eigenfunctionCm(z),
wherem is the transverse index. It is not difficult to see th
kzmn(v)5kzm(v)1nk0, wherek052p/d, are also eigenval-
ues of Eq.~1!. But they have other eigenfunctions:Cmn(z)
5Cm(z)e2 ink0z. The set of curveskzmn(v)5kzm(v)1nk0,
wherem51, . . . ,̀ andn50,61,62, . . . ,6`, entirely fill
the range 0,v,vp in thev-kz plane@21#. However, it can
be easily established that eigenvalueskzmn(v) and eigen-
functions Cmn(z) with fixed m and differentn define the
same full fieldEzm(0,z), which is characterized by the trans
verse indexm. Therefore, one can use any of them to calc
late the full field~the others are spurious!.

At a fixedn the eigenvalues of Eq.~1!, km(v), correspond
to a set of transverse modes and consequently generat
ordinary spectrum as in the case of a smooth plasma-fi
waveguide. Thus, before numerical calculations it would
reasonable to transform Eq.~1! in such a way that one ca
get rid of spurious solutions.

For this purpose, we introduce a function

F~z!5Ez

Ez~0,z8!dz8.

For F(z) we have the following problem:

F„z1w~z!…1F„z2w~z!…50,
~3!

F~z1d!5eikzdF~z!.

Now presentF(z) in the form F(z)5r(z)eikzz1 iu(z), and
decouple Eq.~3! into the folowing two problems for two new
unknown real functionsr(z) andu(z):

r„z1w~z!…5r„z2w~z!…,
~4!

r~z1d!5r~z!,

1

2
@u„z1w~z!…2u„z2w~z!…#5~m11/2!p2kzw~z!,

~5!
u~z1d!52pn1u~z!.

It can be shown that the spectral properties of our struc
are determined by the problem~5!, while the problem~4! has
a simple and evident solutionr(z)5const.

Now, assumen50 in Eq.~5!; this enables us to get rid o
spurious solutions. The resulting problem characterizes
ordinary spectrum of transverse modes:
6-2
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1

2
@u„z1w~z!…2u„z2w~z!…#5~m11/2!p2kzw~z!,

~6!
u~z1d!5u~z!.

Therefore it is possible to analyze Eq.~6! numerically.

III. METHODS OF SOLUTION OF BASIC EQUATION

The simplest numerical solution of Eq.~6! is based on
perturbation theory. The zero approximation can be found
expandingu„z6w(z)… into the Taylor series nearz:

1

2
@u„z1w~z!…2u„z2w~z!…#

5u8~z!w~z!1
1

6
u-~z!w3~z!1•••. ~7!

Taking in to account only the first term of the Taylor seri
in Eq. ~7! and then substituting Eq.~7! in Eq. ~6!, one can
obtain a first-order differential equation foru(z) that can be
solved analytically:

u~z!52kzz1~m11/2!pEz dz8

w~z8!
. ~8!

Using the periodicity ofu(z), it is not difficult to find ex-
pressions for the spectral curves~i.e., eigenvalues as func
tions of v):

kzm~v!5
~m11/2!p

d E
0

d dz8

w~z8!
. ~9!

For the eigenfunctions we have@assumingr(z)51]

Fm~z!5expS i ~m11/2!pEz dz8

w~z8!
D . ~10!

Expressions~9! and ~10! have clear physical meaning
Recall thatkzm

l (z)5(m11/2)p/w(z) is the local wave num-
ber of a smooth plasma waveguide with local thickne
X0(z). Then it can be concluded that the eigenfunctions h
the form of wave packetsFm(z)5exp@i*zkzm

l (z8)dz8#, which
are typical for slightly nonuniform plasma configuratio
@24# and widely accepted for description of slightly nonun
form waveguides@25#. Thus, expression~9! is the local wave
number of the smooth waveguide averaged over the per
In the case of sinusoidal ripplesX0(z)5x0(11a cosk0z),
wherex0 is the mean thickness of the waveguide, the in
gration in Eq.~9! can be carried out analytically, yielding

kzm~v!5
~m11/2!p

u«~v!u1/2x0A12a2
. ~11!

In the limit of a→0 expressions~10! and ~11! tend to
eigenfunctions and eigenvalues corresponding to the o
nary Trivelpiece-Gould waves in a smooth waveguide:
01640
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Fm~z!5exp@ ikzm~v!z#, kzm~v!5
~m11/2!p

u«~v!u1/2x0
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More accurate solutions of Eq.~5! can be found using
perturbation theory. Rewrite Eq.~5! in the operator form
L̂u(z)5 f (z), where

L̂u~z![
1

2
@u„z1w~z!…2u„z2w~z!…#

and

f ~z!5~m11/2!p2kzw~z!.

PresentingL̂ in the form L̂5L̂01L̂1 and u(z) as u(z)
5u0(z)1u1(z)1•••, where L̂05w(z)(]/]z)@•••#, L̂15L̂

2L̂0, we have

~ L̂01L̂1!@u0~z!1u1~z!1•••#5 f ~z!. ~12!

Assuming thatL̂0 andu0(z) are the zero-order values,L̂1
andu1(z) are the first-order values, and so on, we obtain
following recurrence chain:L̂0u0(z)5 f (z), L̂0u1(z)5

2L̂1u0(z), . . . , L̂0un(z)52L̂1un21(z). This is a chain of
first-order ordinary inhomogeneous differential equatio
Each of them has an analytical solution. Every success
term of the chain can be expressed through the preceding
in a simple analytical way. Omitting algebraic details, w
represent the expressions for eigenvalues and eigenfunc
obtained afterN iterations as

kzm
N ~v!5

~m11/2!p

d E
0

d dz8

w~z8!
S 11 (

n51

N

Sn~z8!D , ~13!

Fm
N~z!5expF i ~m11/2!pEz dz8

w~z8!
S 11 (

n51

N

Sn~z8!D G ,

~14!

whereSn(z) are defined by the following recurrence rule:

S1~z!512 1
2 E

z2w(z)

z1w(z)

dz8/w~z8!,

S2~z!5S1~z!2 1
2 E

z2w(z)

z1w(z)

dz8S1~z8!/w~z8!, . . . ,

Sn~z!5Sn21~z!2 1
2 E

z2w(z)

z1w(z)

dz8Sn21~z8!/w~z8!.

As follows from Eq. ~7!, convergence of solutions~13!
and ~14! should be expected whenw(z),(A6/2p)d, which
is confirmed by computations. If this inequality is broke
the series in Eq.~13! and ~14! have a poor convergence o
divergence. Moreover, no periodic solutions exist for the
6-3
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quencies providingw(z)5 ld/2 at somez5z0, where l

51,2, . . . ,̀ . This point is a singular one for the operatorL̂:
L̂u(z)uz5z0

50. Inside the frequency bands where it is val
no propagating modes can occur. So the former can
treated as stop bands. It is possible to obtain analytical
pressions for them:v2 l,v,v1 l , where v6 l5vp$1
1@p l /x0k0(16a)#2%21/2.

Near stop bands it is reasonable to solve Eq.~6! by direct
numerical methods. Two of them have been developed.
first is based on the expansion ofu(z) in terms of a Fourier
series:u(z)5(q52`

` Cqeik0qz. The resulting infinite system
of linear algebraic equations was solved after truncati
Usually, about 50 Fourier harmonics (uqu<50) were found
enough to achieve precision within 1024 for the calculation
of dispersion curves including regions near stop bands.

Another approach was based on the approximation
u(z) by spline functions:

u~z!> (
i 50

n21

u iBi
k~z!, ~15!

where

Bi
05H 1 if zi<z,zi 11

0 otherwise,

Bi
k~z!5S z2zi

zi 1k2zi
DBi

k21~z!1S zi 1k112z

zi 1k112zi 11
DBi 11

k21~z!,

k>1,

zi5
i

n
d, i 50,1, . . . ,n21.

To achieve accuracy within 1024 in the calculations of dis-
persion curves, one needs to taken;100 for the first-order
spline functions. By increasing the number of Fourier h
monics or the number of spline functions, it is possible
calculate the dispersion curves and field distribution with a
desired accuracy.

FIG. 2. Dispersion curves for the first three plasma modes.
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IV. ANALYSIS OF NUMERICAL RESULTS

Figure 2 shows the dispersion curves of the three fi
plasma modes (m50,1,2) for a sinusoidally rippled wave
guide. The dispersion properties and field distribution
plasma waves are modified slightly by the periodicity co
pared to those of the smooth waveguide if the frequenc
far from a stop band, but they change significantly wh
approaching the stop bands. Group velocities of plas
waves at the boundaries of the stop bands (v5v6 l) tend to
zero. It should be specially noted that the wave number
the fundamental plasma mode tends tok0/2l if the frequency
approaches thel th stop band. No stop bands occur atv
.v11. Therefore, the results of the approximate analy
developed in@22# are valid only in this region. In the region
of low frequencies the stop bands start overlaping. For
ample, for the parameters considered,v16.v25, so no
propagating waves occur belowv15>0.339vp . However,
the rigorous mathematical validity of our initial equation~1!
@ax0k0u«(v)u1/2<1# @23# is restricted to the rangev
>0.457vp for the case in hand. Thus, in this region th
condition of validity of our consideration is slightly violate

FIG. 3. Phase shift of the fieldu(z) caused by the periodicity
taken at different frequencies within the first passbandv11,v
,vp.

FIG. 4. Variation of the field amplitudeA(z) caused by the
periodicity taken at different frequencies within the first passba
v11,v,vp.
6-4
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and the results should be considered as qualitative.
To evaluate the influence of the periodicity on the fie

distribution, we represent the field in the formEz(0,z)
5A(z)eikzz1 iu(z). For a smooth waveguide one can p
A(z)51 andu(z)50. Figures 3 and 4 show the phase sh
u(z) and variable amplitudeA(z) of the electric field
Ez(0,z) at different frequencies inside the first passba
v11,v,vp. The behavior ofu(z) is close to sinusoidal if
the frequency is far fromv11. However, it changes sharpl
if the frequency approachesv11>0.874vp . Near v11 ,
u(z) has a profile close to a serrated one whileA(z) has very
sharp maxima. Such significant modifications are caused
the contributions of a large number of higher spatial harm
ics whose amplitudes drop very slowly with increasing nu
ber if the frequency is near a stop band. This leads to
concentration of the field in small regions where it c
achieve a large magnitude. Such behavior is also obse
when the frequency approaches any boundary of a stop b
v5v6 l . Note that this is hardly possible in vacuum pe
odic waveguides where stop bands are formed by interac
of two or very rarely more spatial harmonics.

V. CONCLUSION

Thus, the results obtained on the basis of the accu
analysis show that the TG waves in periodic plas
waveguides have certain specific features as compared t
EM waves in periodic waveguides. First, there are the
quency bands where the periodicity slightly modifies the d
persion properties of the plasma waves. They propagate t
in the form of wave packets~14! close to those usually ap
pearing in a slightly inhomogeneous plasma@24# and typical
ns

ns

EE

.
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for slightly inhomogeneous waveguides@25#.
Second, there are the frequency bands where the pe

icity leads to significant modifications as compared to
smooth plasma-filled waveguides both in dispersion prop
ties of the plasma waves and in the field distributions. As
the case of the EM modes, the formation of stop band
possible. These effects can hardly be described by pertu
tion theory@see representations~13! and~14!#. Two schemes
of direct numerical analysis have been developed to solve
basic functional equation~6!. They are based on the Fourie
expansion and spline function approximation, respective
They show that the quantity and widths of stop bands dep
on the parameters of the periodic plasma waveguide.
widths of stop bands are proportional to the plasma f
quency and increase with increase in the height of ripple
a fixed period. They also increase with decrease of the st
ture period at a fixed height of ripples. When the frequen
of some plasma mode approaches the stop band, the
concentrates in small regions~much smaller than the struc
ture period!, where it can achieve a value exceeding its a
eraged value by a factor 10. Meanwhile, the group veloci
of plasma modes tend to zero. Such effects can be expla
by the significant influence of higher spatial harmonics.

The revealed features of the TG modes in periodic plas
waveguides are essential for the treatment of the be
plasma instability in periodic plasma-filled waveguides,
the local field distribution of plasma waves can strong
modify the equilibrium plasma density and the beam bun
ing process responsible for the appearance of coherent ra
tion. Also, the stop bands for plasma waves have been
dicted and can be observed experimentally to confirm
validity of the analysis presented here.
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